Redox-Responsive Zinc Finger Fidelity Switch in Homing Endonuclease and Intron Promiscuity in Oxidative Stress
نویسندگان
چکیده
It is well understood how mobile introns home to allelic sites, but how they are stimulated to transpose to ectopic locations on an evolutionary timescale is unclear. Here we show that a group I intron can move to degenerate sites under oxidizing conditions. The phage T4 td intron endonuclease, I-TevI, is responsible for this infidelity. We demonstrate that I-TevI, which promotes mobility and is subject to autorepression and translational control, is also regulated posttranslationally by a redox mechanism. Redox regulation is exercised by a zinc finger (ZF) in a linker that connects the catalytic domain of I-TevI to the DNA binding domain. Four cysteines coordinate Zn(2+) in the ZF, which ensures that I-TevI cleaves its DNA substrate at a fixed distance, 23-25 nucleotides upstream of the intron insertion site. We show that the fidelity of I-TevI cleavage is controlled by redox-responsive Zn(2+) cycling. When the ZF is mutated, or after exposure of the wild-type I-TevI to H(2)O(2), intron homing to degenerate sites is increased, likely because of indiscriminate DNA cleavage. These results suggest a mechanism for rapid intron dispersal, joining recent descriptions of the activation of biomolecular processes by oxidative stress through cysteine chemistry.
منابع مشابه
Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions
GIY-YIG homing endonucleases are modular proteins, with conserved N-terminal catalytic domains connected by linkers to C-terminal DNA-binding domains. I-TevI, the T4 phage GIY-YIG intron endonuclease, functions both in promoting td intron homing, and in acting as a transcriptional autorepressor. Repression is achieved by binding to an operator, which is cleaved at 100-fold reduced efficiency re...
متن کاملHomology modeling and mutational analysis of Ho endonuclease of yeast.
Ho endonuclease is a LAGLIDADG homing endonuclease that initiates mating-type interconversion in yeast. Ho is encoded by a free-standing gene but shows 50% primary sequence similarity to the intein (protein-intron encoded) PI-SceI. Ho is unique among LAGLIDADG endonucleases in having a 120-residue C-terminal putative zinc finger domain. The crystal structure of PI-SceI revealed a bipartite enzy...
متن کاملCrystallization and preliminary X-ray studies of I-PpoI: a nuclear, intron-encoded homing endonuclease from Physarum polycephalum.
The homing endonuclease I-PpoI is encoded by an optional third intron, Pp LSU 3, found in nuclear, extrachromosomal copies of the Physarum polycephalum 26S rRNA gene. This endonuclease promotes the lateral transfer or "homing" of its encoding intron by recognizing and cleaving a partially symmetric, 15 bp homing site in 26S rDNA alleles that lack the Pp LSU 3 intron. The open reading frame enco...
متن کاملCoevolution of a homing endonuclease and its host target sequence.
We have determined the specificity profile of the homing endonuclease I-AniI and compared it to the conservation of its host gene. Homing endonucleases are encoded within intervening sequences such as group I introns. They initiate the transfer of such elements by cleaving cognate alleles lacking the intron, leading to their transfer via homologous recombination. Each structural homing endonucl...
متن کاملHoming endonuclease I-TevIII: dimerization as a means to a double-strand break
Homing endonucleases are unusual enzymes, capable of recognizing lengthy DNA sequences and cleaving site-specifically within genomes. Many homing endonucleases are encoded within group I introns, and such enzymes promote the mobility reactions of these introns. Phage T4 has three group I introns, within the td, nrdB and nrdD genes. The td and nrdD introns are mobile, whereas the nrdB intron is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 21 شماره
صفحات -
تاریخ انتشار 2011